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Abstract A pressure–volume–temperature data set has

been obtained for natural chromium spinel, using synchro-

tron X-ray diffraction with a resistance heated diamond-

anvil cell (RHDAC). The unit cell parameter of the

chromium spinel was measured by energy dispersive X-ray

diffraction up to pressures of 26.8 GPa and temperatures

of 628 K. No phase change has been observed. The observed

P–V–T data were fit to the high-temperature Birch-Murna-

ghan equation of state, with V0 fixed at its experimental

value, yields K0 = 209 ± 9 GPa, (qK/qT)P = -0.056 ±

0.035 GPa K-1, and a0 = 7±1 9 10-5 K-1. The temper-

ature derivative of the bulk modulus (qK/qT)P of chromium

spinel is determined here for the first time. The obtained K0 is

slightly higher than the previous results of synthetic spinel.

We suggest that Fe2+–Mg2+ substitution is responsible for

the high bulk modulus of chromium spinel.

Introduction

Spinel (AB2O4, where, in most cases, A is a divalent and B

a trivalent cation) have a close-packed face-centered cubic

structure with space group Fd3m. The unit cell contains 32

O atoms in cubic close packing, 16 octahedral sites (M),

and 8 tetrahedral sites (T) occupied by the A and B cations.

Spinel oxides form an important range of ceramic

compounds with great interesting electrical, mechanical,

magnetic, and optical properties, thus suitable for various

technological applications, such as superconductors, mag-

netic cores, and high-frequency devices [1–3]. Since many

of the spinels are common minerals, they also have great

geological and geophysical interest [4–6]; especially

chromium spinel is regarded as important petrogenetic

indicator in ultramafic to mafic rocks [6].

Recently, different high-pressure studies of spinel

focused on phase stability and EOS of synthetic spinel

[7–29]. Most of these studies showed that spinel split into

periclase (MgO) and corundum (Al2O3) at about 15 GPa

and 1273 K [7, 8]. However, Liu [9] reported a dense

phase of spinel at 25 GPa and 1273 K, which was called

e-MgAl2O4. Based on their experimental results, Irifune

et al. [7] argued that the spinel is unable to form the

e-MgAl2O4 up to 26 GPa and 1773 K, but to form the high-

pressure phase of CaFe2O4 structure. The experimental

results of Funamori et al. [8] and Akaogi et al. [11] sup-

ported the conclusions of the Irifune coauthors [7].

However, most of studies focused on synthetic samples,

only a few of works regard natural spinels [16, 30], which
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can help us to verify the quality of the models of the effect

of compositional variability in such mineral families.

P–V–T relationship for a chromium spinel up to 14.8 GPa

and 603 K has been reported by Ma et al. [30]. However, the

pressure range explored in their study is smaller, and the

retrieved bulk modulus, K0 = 396 GPa is substantially lar-

ger than in previous studies (181.5–217 GPa) [14–29]. In

this paper, we reported the thermal EOS of the same chro-

mium spinel up to 26.8 GPa and 628 K, and derived the

thermodynamic and thermoelastic parameters.

Experimental procedures

Samples

The natural spinel was selected from a lherzolite xenolith

collected from Hannuoba basalt, Hebei provinces, north

China. Its impurity content is less than 1%. The chemical

composition of the spinel was determined by electron probe

[30], and chemical formula of the crystal was calculated to be

(Na+Mg2+Fe2+Ti4+)0.9661(Cr3+Al3+)2.0241O4. The Cr2O3

and FeO contents of the spinel are 59.95% and 10.7%,

respectively. Based on the composition, the spinel is named

chromium spinel. The sample was ground under acetone in

an agate mortar to an average grain size of 5 lm and dried.

P–V–T experiment

Energy dispersive diffraction experiments on the chromium

spinel were carried out in situ at high pressure and temper-

ature in a resistance heated diamond-anvil cell at 4W2 High-

Pressure Station of Beijing Synchrotron Radiation Facility

(BSRF). The size of the X-ray focal spot is 50 lm 9 15 lm

and the culet of the DAC is 500 lm. The sample powder was

loaded with the inner pressure standard Mo powder into a

200 lm hole in a T301 stainless steel gasket. The pressure

medium was a mixture of methanol and ethanol and water

with 16:3:1. The pressure in the DAC was determined by

using the equation of state of Mo [31]. The samples were

heated using a resistance-heating system and temperature

was measured by the NiCr–NiSi thermocouple with its pre-

cision of ± 2 �C.The diffraction angle(2h) was set to

12.748�(±0.018�),which was calibrated by the diffractive

peaks of Mo at ambient conditions. Details of the experi-

mental technique have been described previously [32].

Typical exposure time for the diffraction patterns was

600 s. Typical spectra at selected pressures and temperatures

were shown in Fig. 1. The unit-cell parameters of both spinel

and Mo were calculated from peak positions by least squares

technique. In the calculation, sample diffraction lines

111,311,400,551, and 440 were used to refine the parame-

ters, and sometimes 220 was also used when available.

Results and discussion

As pressure increased, all the peaks shifted continuously

toward higher energy, but the overall pattern did not

change. And all of the diffraction data were obtained inside

the stability field of the chromium spinel. Therefore, we

suggest that the sample is stable up to 26.8 GPa (Fig. 1).

The obtained cell parameters were calculated by using the

Unitcell process [33] show a smooth, continuous decrease

with increasing pressure (Table 1).

High-temperature Birch-Murnaghan equation of state

The high-temperature Birch-Murnaghan (HTBM) equation

of state is often used to fit the P–V–T data. The equation of

state is given by the following expression:

Fig. 1 Representative X-ray diffraction spectra of the chromium

spinel under different pressures and temperatures. f—Fluorescence

peak of Mo; g—gasket X-ray diffraction peak

Table 1 Cell parameters versus pressure and temperature for the

chromium spinel

P

(GPa)

T

(K)

a

(Å)

V (Å3) P

(GPa)

T

(K)

a (Å) V

(Å3)

0.1 300 8.229(2) 557.32(35) 18.4 353 8.057(1) 523.06(20)

3.1 300 8.194(4) 550.16(43) 7.8 443 8.171(5) 545.45(33)

5.4 300 8.167(3) 544.68(23) 13.0 443 8.117(6) 534.74(23)

9.7 300 8.123(3) 536.03(36) 24.4 443 8.026(2) 517.06(36)

12.2 300 8.095(2) 530.42(28) 7.2 533 8.189(2) 549.16(29)

15.0 300 8.073(4) 526.23(33) 15.4 533 8.103(5) 532.03(36)

16.4 300 8.059(3) 523.36(21) 17.5 533 8.090(3) 529.55(28)

19.8 300 8.028(4) 517.36(33) 22.8 533 8.049(3) 521.53(26)

23.0 300 8.007(3) 513.37(26) 7.8 628 8.195(4) 550.26(34)

26.8 300 7.991(2) 510.29(31) 10.7 628 8.160(2) 543.32(34)

7.3 353 8.163(5) 543.88(21) 18.6 628 8.089(3) 529.35(28)

16.4 353 8.073(4) 526.08(27) 23.4 628 8.055(3) 522.63(23)

Numbers in brackets are 1r error in last digits
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where V0, K0, K 00 are the zero-pressure volume, isothermal

bulk modulus, and its pressure derivative, respectively.

In the first approach, Eq. 1 is modified to take into account

the effects of temperature dependence of the bulk modulus:

KT ¼ K0 þ
oK

oT

� �
P

T � 300ð Þ; ð2Þ

and the cell volume

VT ¼ V0 exp

Z T

300

aT dT; ð3Þ

where oK
oT

� �
P

is the temperature derivative of the bulk

modulus, which is assumed to be constant over the whole

temperature range, and aT is the thermal expansivity at

ambient pressure.

We assume that K 0T does not change with temperature,

i.e.
oK 0T
oT

� �
P
¼ 0: The experimental P–V–T data were fitted

to high-temperature Birch-Murnaghan (HTBM) EOS

(Fig. 2). Using our measured V0 = 557.86 Å3, we obtained

that

K0 ¼ 209 � 9 GPa; K 00 ¼ 7� 1;

K 000 ¼ �0:0933 GPa�1;

oK

oT

� �
P

¼ �0:056� 0:035 GPa K�1;

a0 ¼ 7� 1� 10�5K�1

Discussion

So far, many experimental studies of the elastic properties

of spinel have been conducted [14–30]. Their bulk moduli

(K0) and pressure derivatives (K 00) are listed in Table 2.

Among spinels, MgAl2O4 is one of the most common spi-

nels, and both its high-temperature and high-pressure

behavior has been studied intensively [14–18]. Various

reports on the K0 of MgAl2O4 converge to K0 = 190–

198 GPa (Table 2). Catti et al. [19] had studied the high-

pressure equation of state of chromium spinel (MgCr2O4,

MnCr2O4, and ZnCr2O4) by theoretical calculations, and the

bulk modulus of MgCr2O4, MnCr2O4, and ZnCr2O4 are

197.3, 205.8, and 215.0 GPa, respectively. The studies of

MgFe2O4 give K0 value in the range from 181.5 to 190 GPa

[20]. Levy et al. [21] have investigated the structural

behavior of synthetic gahnite (ZnAl2O4) by X-ray powder

diffraction, and they obtained the bulk modulus of ZnAl2O4

as 201.7 GPa. Levy et al. [22] also measured the elastic

properties of synthetic zincochromite (ZnCr2O4), and the

bulk modulus of ZnCr2O4 is 183.1 GPa. The bulk modulus

of the same end-member compositions of spinel (ZnCr2O4)

determined by X-ray diffraction at high pressure is about

15% lower than that of Catti et al., which was determined

by theoretical calculations. The investigation of ZnFe2O4

indicated that K0 value is 166 GPa [23]. Recently, several

authors also have studied the compressibility of FeAl2O4,

FeCr2O4, and FeFe2O4 (Table 2) [16, 24–29].

The compressibility of the MgCr2O4 and MgFe2O4 is very

similar to that of MgAl2O4, while the ZnAl2O4 is less com-

pressible than ZnFe2O4. But, according to the electronic

configurations involved, the ZnFe2O4 is always softer than

ZnAl2O4. The bulk modulus values obtained from FeAl- and

ZnAl-spinels are in general higher than the MgAl composi-

tions. So, Levy et al. [15] claimed that the main reason of the

relatively large bulk modulus of ZnAl2O4 was the Zn2+

cation replacing Mg2+ cation in the tetrahedral site, sup-

ported by Levy et al. [23] who considered that the

replacement of Fe2+ with Zn2+ brought the elastic properties

of franklinite significantly different from those of magnetite.

From Table 2, the bulk modulus of the chromium spinel

in this study is slightly larger than those in previous studies,

whereas in good agreement with Reichmann et al. [34].

There are two possible sources for the high bulk modulus.

First, we used a methanol–ethanol–water mixture with

16:3:1 for the pressure medium, which freezes above 10 GPa,

and the hydrostatic circumstance of sample chamber will be

influenced [35]. In this study, the bulk modulus obtained from

the hydrostatic conditions (up to 9.7 GPa), K0 = 207(6) GPa,

is smaller than the experimental measurements of elastic

modulus that lead to K0 = 209(9) GPa. This difference is

very likely related to the different experimental conditions

(hydrostaticity and non-hydrostaticity condition). Fei et al

[36] considered that the bulk modulus derived from com-

pression data under nearly hydrostatic conditions was smaller

than from non-hydrostatic compression data. So, we infer that

the non-hydrostatic condition may be a reason, but not a pri-

mary reason, for the relatively large bulk modulus.

Fig. 2 P–V–T data of the chromium spinel. The solid lines are

isothermal Birch-Murnaghan fits at temperatures 300, 373, 473, and

573 K, respectively
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Second, the sample of this experiment has high content

of the FeO. The Fe2+ cation is believed to replace to the

Mg2+ cation in the tetrahedral site in the natural chromium

spinel. According to discussed by Vermaas and Schmidt

[37], in the spinels the degree of covalence in bonds

increases with increasing Fe2+ content. Moreover, the

pressure derivative of Fe2+–O bonds (49 9 104 Å/GPa) is

much greater than Mg2+–O bonds (46 9 104 Å/GPa) [38].

A comparison between the elastic parameters in this work

and in previous results of MgAl2O4, MgCr2O4, FeAl2O4,

and FeCr2O4 reveals that the responsibility for bulk mod-

ulus of Fe2+–Mg2+ substitution in tetrahedral site is more

than Cr3+–Al3+ substitution in octahedral site. Therefore,

we suggest that although the effect of non-hydrostaticity

exists and the Fe2+ cation replacing the Mg2+ cation in the

tetrahedral site are the main reason for the relatively large

bulk modulus in our experiment. Our conclusions approve

the above views about the effect of chemical substitution to

bulk modulus in end-member spinels.

Conclusion

The P–V–T measurements on chromium spinel at pressures

up to 26.8 GPa in the temperature range of 300–628 K

were carried out using RHDAC technique. The isothermal

bulk modulus, and its pressure derivative, the temperature

derivative of the bulk modulus and the thermal expansivity

coefficient of the natural chromium spinel are 209 ±

9 GPa, 7 ± 1, -0.056 ± 0.035 GPa K-1, 7 ± 1 9 10-5

K-1, respectively. The temperature derivative of the bulk

modulus (qK/qT)P is obtained for the first time. The main

reason of the relatively large bulk modulus of the natural

chromium spinel is the Fe2+ cation replacing Mg2+ cation

in the tetrahedral site.
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